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Abstract- Measuring similarity or distance between two entities is a key step for several data mining and knowledge 

discovery tasks. The notion of similarity for continuous data is relatively well-understood, but for categorical data, 

the similarity computation is not straightforward. Several data-driven similarity measures have been proposed, The 

existing algorithms for text mining make use of a single viewpoint for measuring similarity between objects. Their 

drawback is that the clusters can’t exhibit the complete set of relationships among objects. To overcome this 

drawback, we propose a new similarity measure known as Hierarchical multi-viewpoint based similarity measure to 

ensure the clusters show all relationships among objects. We also proposed two clustering methods. The empirical 

study revealed that the hypothesis “multi-viewpoint similarity can bring about more informative relationships among 

objects and thus more meaningful clusters are formed” is proved to be correct and it can be used in the real time 

applications where text documents are to be searched or processed frequently. 
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I. INTRODUCTION 

Measuring similarity or distance between 

two data points is a core requirement for several data 

mining and knowledge discovery tasks that involve 

distance computation. Examples include clustering 

(kmeans), distance-based outlier detection, 

classification, and several other data mining tasks. 

These algorithms typically treat the similarity 

computation as an orthogonal step and can make use 

of any measure. 

For continuous data sets, the Minkowski 

Distance is a general method used to compute 

distance between two multivariate points. In 

particular, the Minkowski Distance of order 1 

(Manhattan) and order 2 (Euclidean) are the two most 

widely used distance measures for continuous data. 

The key observation about the above measures is that 

they are independent of the underlying data set to 

which the two points belong. Several datadriven 

measures, such as Mahalanobis Distance, have also 

been explored for continuous data. 

Clustering in general is an important and 

useful technique that automatically organizes a 

collection with a substantial number of data objects 

into a much smaller number of coherent groups. 

Text document clustering groups similar 

documents that to form a coherent cluster, while 

documents that are different have separated apart into 

different clusters. However, the definition of a pair of  

 

 

 

documents being similar or different is not 

always clear and normally varies with the actual 

problem setting. For example, when clustering 

research papers, two documents are regarded as 

similar if they share similar thematic topics. When 

clustering is employed on web sites, we are usually 

more interested in clustering the component pages 

according to the type of information that is presented 

in the page. For instance, when dealing with 

universities’ web sites, we may want to separate 

professors’ home pages from students’ home pages, 

and pages for courses from pages for research 

projects. This kind of clustering can benefit further 

analysis and utilize of the dataset such as information 

retrieval and information extraction, by grouping 

similar types of information sources together. 

Accurate clustering requires a precise 

definition of the closeness between a pair of objects, 

in terms of either the pairwised similarity or distance. 

A variety of similarity or distance measures have 

been proposed and widely applied, such as cosine 

similarity and the Jaccard correlation coefficient. 

Meanwhile, similarity is often conceived in terms of 

dissimilarity or distance as well [5]. Measures such as 

Euclidean distance and relative entropy have been 

applied in clustering to calculate the pair-wise 

distances. 

A common approach to the clustering 

problem is to treat it as an optimization process. An 



IJDCST @November Issue- V-1, I-7, SW-65 
ISSN-2320-7884 (Online) 
ISSN-2321-0257 (Print) 
 

256 www.ijdcst.com 

 

optimal partition is found by optimizing a particular 

function of similarity (or distance) among data. 

Basically, there is an implicit assumption that the true 

intrinsic structure of data could be correctly described 

by the similarity formula defined and embedded in 

the clustering criterion function. Hence, effectiveness 

of clustering algorithms under this approach depends 

on the appropriateness of the similarity measure to 

the data at hand. For instance, the original k-means 

has sum-of-squared-error objective function that uses 

Euclidean distance. In a very sparse and high 

dimensional domain like text documents, spherical 

kmeans, which uses cosine similarity instead of 

Euclidean distance as the measure, is deemed to be 

more suitable[3], [4]. 

The work in this paper is motivated by investigations 

from the above and similar research findings. It 

appears to us that the nature of similarity measure 

plays a very important role in the success or failure of 

a clustering method. Our first objective is to derive a 

novel method for measuring similarity between data 

objects in sparse and high dimensional domain, 

particularly text documents. From the proposed 

similarity measure, we then formulate new clustering 

criterion functions and introduce their respective 

clustering algorithms, which are fast and scalable like 

k-means, but are also capable of providing high-

quality and consistent performance. 

II.SIMILARITIES MEASURE 

Before clustering, a similarity/distance 

measure must be determined. The measure reflects 

the degree of closeness or separation of the target 

objects and should correspond to the characteristics 

that are believed to distinguish the clusters embedded 

in the data. In many cases, these characteristics are 

dependent on the data or the problem context at hand, 

and there is no measure that is universally best for all 

kinds of clustering problems. 

Measuring similarities between objects 

differenty ways . Its given below 

Metric 

Not every distance measure is a metric. To qualify as 

a metric, a measure d must satisfy the following four 

conditions. 

Let x and y be any two objects in a set and d(x, y) be 

the distance between x and y. 

1. The distance between any two points must 

be nonnegative, that is, d(x, y)>= 0. 

2. The distance between two objects must be 

zero if and only if the two objects are 

identical, that is, d(x, y) = 0 if and only if x 

= y. 

3. Distance must be symmetric, that is, 

distance from x to y is the same as the 

distance from y to x, ie. d(x, y) = d(y, x). 

4. The measure must satisfy the triangle 

inequality, which is d(x, z) <= d(x, y) + d(y, 

z). 

Euclidean Distance 

Euclidean distance is a standard metric for 

geometrical problems. It is the ordinary distance 

between two points and can be easily measured with 

a ruler in two- or three-dimensional space. Euclidean 

distance is widely used in clustering problems, 

including clustering text. It satisfies all the above four 

conditions and therefore is a true metric. It is also the 

default distance measure used with the K-means 

algorithm. 

Measuring distance between text documents, 

given two documents da and db represented by their 

term vectors ta and tb  respectively, the Euclidean 

distance of the two documents is defined as 

 

 

 

 

Cosine Similarity 

When documents are represented as term 

vectors, the similarity of two documents corresponds 

to the correlation between the vectors. This is 

quantified as the cosine of the angle between vectors, 

that is, the so-called cosine similarity. Cosine 

similarity is one of the most popular similarity 

measure applied to text documents, such as in 

numerous information retrieval applications [2] and 

clustering too [9]. 

Given two documents ta and tb , their cosine 

similarity is 

 

 

where  ta and tb  are m-dimensional vectors 

over the term set T = {t1, . . . , tm}. Each dimension 

represents a term with its weight in the document, 

which is non-negative. As a result, the cosine 

similarity is non-negative and bounded between 

[0,1]. 

Jaccard Coefficient 

The Jaccard coefficient, which is sometimes referred 

to as the Tanimoto coefficient, measures similarity as 

the intersection divided by the union of the objects. 

For text document, the Jaccard coefficient compares 

the sum weight of shared terms to the sum weight of 
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terms that are present in either of the two document 

but are not the shared terms. The formal definition is: 

 

 

 

The Jaccard coefficient is a similarity 

measure and ranges between 0 and 1. It is 1 when the 

ta = tb and 0 when ta and tb are disjoint, where 1 

means the two objects are the same and 0 means they 

are completely different. The corresponding distance 

measure is DJ = 1 − SIMJ and we will use DJ instead 

in subsequent experiments. 

Pearson Correlation Coefficient 

Pearson’s correlation coefficient is another 

measure of the extent to which two vectors are 

related. There are different forms of the Pearson 

correlation coefficient formula. Given the term set T 

= {t1, . . . , tm}, a commonly used form is 

 

 

 

  

This is also a similarity measure. However, 

unlike the other measures, it ranges from +1 to −1 

and it is 1 when ta = tb . In subsequent experiments 

we use the corresponding distance measure, which is 

DP = 1−SIMP when SIM>= 0 and DP = |SIMP | 

when SIMP < 0. 

 

III. EXISTING SYSTEM 

The existing system  similarities measure in 

only one view such as euclidean distance or 

cosine similarities or jaccard coefficient so it 

measures similarities between objects only 50 

to 60 %. 

IV. PROPOSED SYSTEM 

Agglomerative hierarchical clustering is a 

bottom-up clustering method where clusters have 

sub-clusters, which in turn have sub-clusters, etc. The 

classic example of this is species taxonomy. Gene 

expression data might also exhibit this hierarchical 

quality (e.g. neurotransmitter gene families). 

Agglomerative hierarchical clustering starts with 

every single object (gene or sample) in a single 

cluster. Then, in each successive iteration, it 

agglomerates (merges) the closest pair of clusters by 

satisfying some similarity criteria, until all of the data 

is in one cluster. 

Hierarchical Clustering Algorithm – 

Multi View Point Similarities 

 Assign each object to a separate cluster. 

 Evaluate all pair-wise similarities using 

Euclidian distance or cosine similarity or  jacard 

coefficient .  

 Construct a distance matrix using the similar 

object values.  

 Look for the pair of clusters with the most 

similar objects.  

 Remove the pair from the matrix and merge 

them. 

 Evaluate all similarities measure from this new 

cluster to all other clusters, and update the 

matrix. 

 Repeat until the similarity matrix is reduced to a 

single element. 

 

IV. EXPERIMENTAL RESULTS 

To demonstrate how well MVSCs can 

perform, we compare them with six other clustering 

methods on the twenty datasets in Table 1. In 

summary, the eight clustering algorithms are: 

 MVSC-IR: MVSC using criterion function IR 

 MVSC-IV : MVSC using criterion function IV 

 k-means: standard k-means with Euclidean 

distance 

 Spkmeans: spherical k-means with CS 

 graphCS: CLUTO’s graph method with CS 

 graphEJ: CLUTO’s graph with extended Jaccard 

 MMC: Spectral Min-Max Cut algorithm [10] 

 HC:Hierarchical Clustering 

Many clustering algorithms require parameter to 

be chosen to determine the granularity of the result. 

Partitioning methods such as the k-means and k-

medoids algorithms require that the number of 

clusters, k, be specified. Density-based methods use 

input parameters that relate directly to cluster size 

rather than the number of clusters. Hierarchical 

methods avoid the need to specify either type of 

parameter and instead produce results in the form of 

tree structures that include all levels of granularity. 

When generalizing partitioning-based methods to 

hierarchical ones, the biggest challenge is the 

performance. 

Hierarchical clustering as a search for 

equilibrium cluster centers requires us to have a fast 

method of finding data points based on their feature 

attribute values. Density-based algorithms such as 

DENCLUE achieve this goal by saving data in a 
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special data structure that allows referring to 

neighbors. We use a data structure, namely a Peano 

Count Tree (or P-tree) [11, 12, 13, 14, 15] that allows 

fast calculation of counts of data points based on their 

attribute values. 

P-TREE 

Many types of data show continuity in 

dimensions that are not themselves used as data 

mining attributes. Spatial data that is mined 

independently of location will consist of large areas 

of similar attribute values. Data streams and many 

types of multimedia data, such as videos, show a 

similar continuity in their temporal dimension. Peano 

Count Trees are constructed from the sequences of 

individual bits, i.e., 8 P-trees are constructed for byte-

valued data. Compression is achieved by eliminating 

nodes that consist entirely of 0- or 1-values. Two and 

more dimensional data is traversed in Peano order, 

i.e., recursive raster order. This ensures that 

continuity in all dimensions benefits compression 

equally. Counts are maintained for every quadrant. 

The P-tree for an 8-row-8-column bit-band is shown 

in Figure 1 

Hierarchical clustering algorithm that is 

based on some of the same premises as well-known 

partition- and density-based techniques. The time-

complexity of k-medoids related algorithms is 

avoided in a systematic way and the influence of 

outliers is reduced. The hierarchical organization of 

data represents information at any desired level of 

granularity and relieves the user from the necessity of 

selecting parameters prior to clustering. Different 

levels in the hierarchy are efficiently calculated by 

using lower level solutions as starting points for the 

                    
Fig 1: 8x8 image and P-Tree. 

computation of higher level cluster centers. We use 

the P-tree data structure for efficient storage and 

access of data. Comparison with kmeans shows that 

we can achieve the benefits of improved outlier 

handling without sacrificing performance. 

We tested the speed and effectiveness of Hierarchical 

clustering algorithm by comparing with the result of 

using k means clustering. The data was generated 

with no assumptions on continuity in the structural 

dimension (e.g., location for spatial data, time for 

multimedia data). Such continuity would 

significantly benefit from the use of P-tree methods. 

The speed demonstrated in this section can therefore 

be seen as an upper bound to the time complexity. 

Speed comparison was done on data with 2 attributes 

for a range of data set sizes.[15] 

 

 
Fig 2: Speed Comparision Heirarchical and K-means 

approach 

The Table 1 compares the cluster centers of 

k-means for k = 5 with those found by Hierarchical  

algorithm. K-means results were significantly more 

influenced by the noise between the identifiable 

clusters than the results of our algorithm. 

Table 1: Comparision of cluster center for 

the data set of Fig 2: 

       

k-means 

(k=5) 

X 11 4 35 4 23 

y 11 12 6 22 23 

Hierarchical X 9 27 24 4 18 

y 11 22 6 21 25 

     Clustering solution is evaluated by comparing the 

documents’ assigned labels with their true labels 

provided by the corpus. Three types of external 

evaluation metric are used to assess clustering 

performance. They are the FScore, Normalized 

Mutual Information (NMI) and Accuracy. FScore is 

an equally weighted combination of the “precision” 

(P) and “recall” (R) values used in information 

retrieval. Given a clustering solution, FScore is 

determined as: 

 

 

 

 

 

 

Where ni denotes the number of documents 

in class i, nj the number of documents assigned to 

cluster j, and ni,j the number of documents shared by 

class i and cluster j. From another aspect, NMI 

measures the information the true class partition and 

the cluster assignment share. It measures how much 
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knowing about the clusters helps us know about the 

classes: 
 

 

 

 

 

Finally, Accuracy measures the fraction of documents 

that are correctly labels, assuming a one-to-one 

correspondence between true classes and assigned 

clusters. Let q denote any possible permutation of 

index set {1, . . . , k},Accuracy is calculated by: 

 

 

 

The best mapping q to determine Accuracy 

could be found by the Hungarian algorithm2. For all 

three metrics, their range is from 0 to 1, and a greater 

value indicates a better clustering solution. 

It can be observed that MVSC-IR and MVSC-IV 

perform consistently well. In Fig. 1 19 out of 20 

datasets, except reviews, either both or one of MVSC 

approaches are in the top two algorithms. The next 

consistent performer is Hierarchical Clustering. The 

other algorithms might work well on certain dataset. 

For example, graphEJ yields outstanding result on 

classic; graphCS and MMC are good on reviews. 

The  observation, which is also the main 

objective of this empirical study, is that by applying 

MVSC to refine the output of spherical k-means, 

clustering are improved significantly. Both rMVSC-

IR and rMVSC-IV lead to higher NMIs and 

Accuracies than Spkmeans in all the cases. 

Interestingly, there are many circumstances where 

Spkmeans’ result is worse than that of NMF 

clustering methods, but after refined by MVSCs, it 

becomes better. 

 

 
 

 

Fig 2: Clustering results in FScore 

 

But they do not fare very well on the rest of the 

collections 

 
 

Fig 3: Clustering Results in NMI 

V. CONCLUSION 

     In this paper we proposed a new similarity 

measure known as HMVS ( Hierarchical Multi-

Viewpoint based Similarity). When it is compared 

with cosine similarity, HMVS is more useful for 

finding the similarity of text documents. The 

empirical results and analysis revealed that the 

proposed scheme for similarity measure is efficient 

and it can be used in the real time applications in the 

text mining domain 
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